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Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet their response rates 
remain modest, ranging from 20-40% across different cancer types [1]. There is a critical need 
for predictive tools to optimize treatments, avoid unnecessary side effects and identify 
patients most likely to respond to ICIs. Towards this goal, we developed a novel machine 
learning model for predicting overall survival (OS) in cancer patients undergoing treatment 
with ICIs, called ImmunoBERT, which takes as input clinical and molecular data currently 
available in real-world settings.

ImmunoBERT: a deep learning framework to predict ICI 
patient response

We curated a comprehensive clinicogenomics dataset of cancer patients treated with anti-PD1 
and anti-CTLA4 checkpoint therapies (n=1700 patients), ICI drug structure embeddings, and 
binding affinity profiles of ICI drug targets. Using this dataset, we trained ImmunoBERT (Figure 
1) which leverages large language models (LLMs) [2] and ProteinBERT (a deep learning model 
built upon the classic Transformer/BERT architecture) [3] to learn a generalization between ICI 
drugs, their protein targets, clinically available genomics data and patient outcome. 

Correlations and higher-order interactions between 220 genes commonly sequenced on 
commercial NGS panels were also leveraged using ImmunoBERT architecture, to reconstruct 
features that improved ICI survival response prediction accuracy, including n=32 tumor 
microenvironment (TME) features, tumor mutational burden (TMB) and PDL1 expression.

Conclusions
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Our study demonstrates the value of integrating biologically relevant factors, such as drug 
structure, target binding affinity and genomic information, into machine learning models to 
improve accuracy of ICI response predictions. Moreover, by effectively leveraging real-world 
clinicogenomics data, including TME characteristics, we were able to reconstruct additional 
biologically relevant features, which further improved both the performance and 
interpretability of ImmunoBERT over current models. ImmunoBERT offers improved ICI 
prognostic capabilities, facilitating personalized treatment decisions to these promising drugs 
and enhancing patient care.
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Figure 2 | Event and censoring distributions are filtered to a tighter 
timeline. Samples were processed to fit a shorter observation window of 24 
months to balance the under- representation of survival events past this point. 
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Figure 1 | ImmunoBERT learns a generalization between ICI drugs, their protein targets, clinically available data, and patient 
outcome. Clinical and NGS data available in real-world settings are used as inputs for ImmunoBERT (top, left). ImmunoBERT predicts a 
patient’s survival probability to a specific ICI over an observation window (top, right). Several open source and proprietary models uncover 
signal in clinically available data that is useful for predicting outcome to immunotherapies. Real-world data is first used to reconstruct gene 
expression via two algorithms– Mut2Ex which leverages signal across cancer gene mutations and copy number alterations profiled on 
commercially available NGS panels, and BioBERT which leverages signal in patient clinical data (bottom, left). Drug and target protein chains 
are further used to encode protein binding information (bottom middle), which are fed into a deep neural network to estimate a patient’s 
survival probability over an observation window (bottom right). 

ImmunoBERT performance was benchmarked against top performing machine learning 
models from the Anti-PD1 Response Prediction DREAM Challenge [4]. The Anti-PD1 Response 
Prediction DREAM Challenge [5] specifically focuses on immunotherapies targeting the 
Anti-PD1 pathway in non-small cell lung cancer (NSCLC). 

Many of the top submissions to this challenge rely on gene expression data, which is often 
prohibitively expensive or otherwise impractical to obtain in clinical environments, outside of 
clinical trials or research settings. 

Our approach leverages signal existing in molecular and clinical data commonly available in 
real-world settings to reconstruct a patient’s tumor expression profile. This approach uses as 
input mutation and copy number data from widely used commercial next generation 
sequencing (NGS) multi-gene panels as well as clinically available annotations, such as disease 
type, patient gender, etc. Critically, we also supply the ICI drug structure embeddings and 
binding affinity profiles of ICI drug targets, so that the model can learn how the context of  
tumor's genetic profile affects the drug's efficacy.

Survival times recorded in these 
datasets were heavily right 
skewed (Fig 2A). In order to 
mitigate the impact on the 
model, patient survival times 
were truncated down to 24 
months. Patients sustaining 
events past this point were 
re-labeled as censored.

ImmunoBert, on the other hand, utilizes transfer learning to specialize the generic protein 
embeddings to predict survival. While effects on concordance score were minimal, a clear 
differentiation in survival curve estimates for each sample was observed (Fig 4B). 
When evaluating the accuracy and precision of ImmunoBert, we see its peak performance 
occurs when predicting survival 6 months out (Fig 4C), with a steady drop-off as survival time 
extends. The sharp drop in AUC from 2-3 months is likely due to the large proportion of 
samples that are right-censored within the first several months. We are accruing additional 
clinicogenomic ICI patient data to enhance overall model accuracy, particularly for extended 
time points. 
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The C-index (or concordance index) statistic was used to evaluate and compare predictive 
accuracy of ImmunoBERT and different survival ML models, where higher C-index indicates 
better predictive accuracy of the model. Despite the limited specificity of our inputs, 
ImmunoBERT (C-index= 0.636) outperformed the top DREAM challenge models (C-index of 
0.607 for top submission) in predicting patient response to ICI therapies.

We curated a comprehensive clinicogenomics dataset of cancer patients treated with 
anti-PD1 and anti-CTLA4 checkpoint therapies (n=1700 patients), ICI drug structure 
embeddings and binding affinity profiles of ICI drug targets.

This thresholding artificially spikes the number of patients censored at 24 months, but 
spreads the remaining patients more evenly (Fig 2B).

Figure 3 |.Concordance Index and Dynamic AUC metrics comparing ZephyrAI models against the DREAM challenge. All 
models that used target/drug embeddings outperformed the DREAM winner. Models that received fixed embeddings (Random Survival 
Forest, Fixed-Embedding Neural Net) achieved  similar concordance scores as  ImmunoBERT. Dynamic AUC was not reported by DREAM, 
but as shown in Fig.4A-B, it captures the performance difference between ImmunoBert and the other ZephyrAI models.
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Figure 4 | Learning ICI-specific drug/target embeddings improves the differentiation in predicted patient outcomes. A) Survival 
Curves for a Fixed-Embedding Neural Net - Despite the variety of event and censoring times, there is very little differentiation between 
survival curves for each  patient. B) Survival Curves for ImmunoBert - Although the concordance score is similar to that of the fixed 
embedding neural net, ImmunoBert is able to generate more specific and informative survival curves. C) Dynamic AUC Curve for 
ImmunoBert - AUC spikes to 0.58 when predicting survival 5 months into the future, with a steady drop off in AUC as the time of prediction 
reaches the end of the observation window.
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To test the efficacy of providing ICI drug and target embeddings to predict overall survival 
(OS), we first generated static embeddings for each drug/target combo using ProtBERT [6], a 
model pre-trained to reconstruct raw protein sequences. When fed to several out-of-the-box 
survival models, we immediately see concordance scores (on par with/outperforming) those 
from the top DREAM submissions (Fig 3). However, when plotting the survival curves, models 
were barely able to distinguish between samples with various survival times (Fig 4A). 


